Abstract
Solving a variational inequality problem VI(Ω, F) is equivalent to finding a solution of a system of nonsmooth equations (a hard problem). The Peaceman-Rachford and /or Douglas-Rachford operator splitting methods are advantageous when they are applied to solve variational inequality problems, because they solve the original problem via solving a series of systems of nonlinear smooth equations (a series of easy problems). Although the solution of VI(Ω, F) is invariant under multiplying F by some positive scalar β, yet the numerical experiment has shown that the number of iterations depends significantly on the positive parameter β which is a constant in the original operator splitting methods. In general, it is difficult to choose a proper parameter β for individual problems. In this paper, we present a modified operator splitting method which adjusts the scalar parameter automatically per iteration based on the message of the iterates. Exact and inexact forms of the modified method with self-adaptive variable parameter are suggested and proved to be convergent under mild assumptions. Finally, preliminary numerical tests show that the self-adaptive adjustment rule is proper and necessary in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.