Abstract

This paper presents a systematic and fast learning algorithm for developing a parsimonious internal structure for self-adaptive neuro-fuzzy inference system (SANFIS). The rule extraction problem is cast as a clustering problem so that the number of rules and the number of term sets for input and output variables can be determined in an efficient and systematic way. The consequent of SANFIS could be fuzzy term sets, fuzzy singleton values, or functions of linear combination of input variables. Without a prior knowledge of the distribution of the training data set, the proposed mapping-constrained agglomerative clustering algorithm is able to reveal the true number of clusters and simultaneously estimate the centers and variances of the clusters for constructing an initial SANFIS structure in a single pass. Next, a fast linear/nonlinear parameter optimization algorithm is performed to further accelerate the learning convergence and improve the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.