Abstract
Self-adaption is one of the most promising areas of research in evolutionary computation as it adapts the algorithm to the problem while solving the problem. In this paper we extend self-adaption to operate on more than one aspect of evolutionary computation and at more than one level of adaption. We developed a genetic algorithm which selfadapts both mutation strength and population size; the results indicate that the approach works quite well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.