Abstract

Pd(II) allyl and Pd(0) olefin complexes containing the configurationally labile ligand 1,2-bis-[4,5-dihydro-3H-dibenzo[c-e]azepino]ethane were studied as models for intermediates in Pd-catalyzed allylic alkylations. According to NMR and DFT studies, the ligand prefers C(s) conformation in both eta3-1,3-diphenylpropenyl and eta3-cyclohexenyl Pd(II) complexes, whereas in Pd(0) olefin complexes it adopts different conformations in complexes derived from the two types of allyl systems in both solution and, as verified by X-ray crystallography, in the solid state. These results demonstrate that the Pd complex is capable of adapting its structure to the reacting substrate. The different structural preferences also provide an explanation for the behavior of 1,3-diphenyl-2-propenyl acetate and 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylations using pseudo-C2 and pseudo-C(s) symmetric ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.