Abstract

Protective materials are essential for personal, electronic, and military defenses owing to their efficient impact-resistant and energy-absorbing properties. Inspired by the bottom-up fabrication process and energy dissipation mechanism of natural organisms with hierarchical structures, we demonstrated a self-wrinkled photo-curing coating as a new protective material for enhancing the anti-impact property of the substrates. Owing to the self-assembly of polydimethylsiloxane (PDMS) containing polymeric photoinitiator on the surface, the liquid coating formulation was photo-cured by one-step UV irradiation with simultaneous generation of self-wrinkled surface morphology and a gradient cross-linked architecture. The maximum impact resistance height (hmax) of the glass substrate coated with plain coating increased from 120 to 180 cm when coated with wrinkled gradient coating. Furthermore, the Young’s modulus, fracture stress, and toughness of the wrinkled gradient coating film improved from 39.6 MPa, 2.4 MPa, and 74.1 MJ/cm3 to 235.0 MPa (∼5× increase), 18.5 MPa (∼6.6× increase), and 845.0 MJ/cm3 (∼10.8× increase) compared to the pure coating film as reference. The theoretical simulation and experimental results proved that the surface self-wrinkled morphology and intrinsic hierarchical architecture contribute to the energy dissipation and impact resistance of the cured coating. The photo-curing process, a bottom-up strategy, is conducted in a non-contact mode compared with nano-printing and lithography, enabling bulk materials to be engineered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call