Abstract

AbstractWe have demonstrated the facile formation of reversible and fast self‐rolling biopolymer microstructures from sandwiched active–passive, silk‐on‐silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self‐roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self‐rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic‐soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer‐by‐layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH‐triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.