Abstract
White noise deconvolution or input white noise estimation has a wide range of applications including oil seismic exploration, communication, signal processing, and state estimation. For the multisensor linear discrete time-invariant stochastic systems with correlated measurement noises, and with unknown ARMA model parameters and noise statistics, the on-line AR model parameter estimator based on the Recursive Instrumental Variable (RIV) algorithm, the on-line MA model parameter estimator based on Gevers-Wouters algorithm and the on-line noise statistic estimator by using the correlation method are presented. Using the Kalman filtering method, a self-tuning weighted measurement fusion white noise deconvolution estimator is presented based on the self-tuning Riccati equation. It is proved that the self-tuning fusion white noise deconvolution estimator converges to the optimal fusion steady-state white noise deconvolution estimator in a realization by using the dynamic error system analysis (DESA) method, so that it has the asymptotic global optimality. The simulation example for a 3-sensor system with the Bernoulli-Gaussian input white noise shows its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Digital Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.