Abstract

In this paper, an adaptive fuzzy controller design methodology via multi-objective particle swarm optimization (MOPSO) based on robust stability criterion is proposed. The plant to be controlled is modeled from its input–output experimental data considering a Takagi–Sugeno (TS) fuzzy nonlinear autoregressive with exogenous input model, by using the fuzzy C-means clustering algorithm (antecedent parameters estimation) and the weighted recursive least squares (WRLS) algorithm (consequent parameters estimation). An adaptation mechanism as MOPSO problem for online tuning of a fuzzy model based digital proportional-integral-derivative (PID) controller parameters, based on the gain and phase margins specifications, is formulated. Experimental results for adaptive fuzzy digital PID control of a thermal plant with time-varying delay are presented to illustrate the efficiency and applicability of the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call