Abstract
A radial basis function neural networks (RBFNs) mobile robot control system is automatically developed with the image processing and learned by the bacterial foraging particle swarm optimization (BFPSO) algorithm in this paper. The image-based architecture of robot model is self-generated to travel the routing path in the dynamical and complicated environments. The visible omni-directional image sensors capture the surrounding environment to represent the behavior model of the mobile robot system. Three parameterize RBFNs model with the centers and spreads of each radial basis function, and the connection weights to solve the mobile robot path traveling and routing problems. Several free parameters of radial basis functions can be automatically tuned by the direct of the specified fitness function. In additional, the proper number of radial basis functions of the constructed RBFNs can be chosen by the defined fitness function which takes this factor into account. The desired multiple objectives of the RBFNs control system are proposed to simultaneously approach the shorter path and avoid the unexpected obstacles. Evaluations of PSO and BFPSO show that the developed RBFNs robot systems skip the obstacles and efficiently achieve the desired targets as soon as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.