Abstract

The conventional PID control (linear) is popular control scheme that is used in almost pH control at waste water treatment process. pH model with respect to titration liquid flow rate has been known to be intrinsically difficult and nonlinear, especially when the process is conducted to non-linear range pH reference (pH 4-8), the settling time reach a long time. Therefore in this paper the nonlinear controller with self-tuning PID scheme is performed handle pH by training a neural-network based on backpropagation error signals. The pH process model is combination between CSTR (Continuous Stirred Tank Reactor) linear dynamic with H3PO4, HF, HCl, H2S flow rate and nonlinear static electro neutrality (wiener process model). The simulation result has a good and suitable performance under several tests (set-point and load change). The simulation result show the pH control system can follow the change of pH set-point and load with the average steady state error 0.00034. The settling time achieved at 50 second faster than conventional PID controller scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.