Abstract
Deformable mirrors (DMs) are electromechanical devices used in ground-based telescopes to compensate for the distortions caused by the atmospheric turbulence, the main factor limiting the resolution of astronomical imaging. Adaptive secondary mirrors (ASMs) represent a new type of DMs; two of them have been recently installed on the 8-m-class large binocular telescope (LBT). ASMs are able to jointly correct rigid and nonrigid wave-front distortions thanks to the use of force actuators distributed on the overall mirror surface. As an offset, each actuator needs to be piloted by a dedicated controller, whose parameters must be accurately tuned to obtain the desired mirror shape. At the present time, the calibration of the controller parameters is executed manually. This paper presents a novel automatic controller tuning procedure that does not rely on the modeling of the mirror dynamics. The experimental validation on a prototype reproducing the three innermost rings of the LBT ASM is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.