Abstract

This paper presents a newly implemented self-tuning PID controller that uses a relay feedback identification using a recently designed relay shifting method to determine the mathematical model of the process and subsequently adjust the controller parameters. The controller is applicable to proportional and integrating systems and is even applicable to systems with transport delays if steady-state oscillation can be achieved in the relay control of the system. After briefly introducing the relay shifting method, the current paper describes the hardware (HW) and software (SW) of the proposed controller in detail. The relay feedback identification and control of a laboratory setup by an automatically tuned controller is demonstrated on a real laboratory device called “Hot air tunnel”. The evaluation of the experiment and the characteristics of the controller are presented at the end of the paper. The advantage of the relay method is that it is not as computationally intensive as other identification methods. It can thus be implemented on more energy-efficient microcontrollers, which is very important nowadays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call