Abstract

We have recently proposed a special class of scalar-tensor theories known as the Fab Four. These arose from attempts to analyze the cosmological constant problem within the context of Horndeski's most general scalar-tensor theory. The Fab Four together give rise to a model of self-tuning, with the relevant solutions evading Weinberg's no-go theorem by relaxing the condition of Poincar\'e invariance in the scalar sector. The Fab Four are made up of four geometric terms in the action with each term containing a free potential function of the scalar field. In this paper we rigorously derive this model from the general model of Horndeski, proving that the Fab Four represents the only classical scalar-tensor theory of this type that has any hope of tackling the cosmological constant problem. We present the full equations of motion for this theory, and give an heuristic argument to suggest that one might be able to keep radiative corrections under control. We also give the Fab Four in terms of the potentials presented in Deffayet et al's version of Horndeski.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.