Abstract

Ultrasonic elliptical vibration cutting is a very promising technique for the machining of brittle materials. However, its machining performance is currently limited by the ductile machining model and the machining strategy with a constant feed rate, leading to low machining efficiency. To overcome this defect, this paper presents a novel self-tuned ultrasonic elliptical vibration cutting (SUEVC) technique to achieve high-efficient ductile-regime machining of the micro-optics array on brittle materials. The proposed SUEVC includes a ductile-regime machining model and a tool path generation method. In SUEVC, the feed rate adaptively changes with respect to the local shape variation of the desired surface along the feeding direction to ensure both crack-free surface and high machining efficiency. Finally, two 1 × 3 spherical micro-optics arrays were successfully fabricated on single-crystal MgF2 by SUEVC and the traditional machining strategy respectively. Results demonstrated that the SUEVC could enhance the machining efficiency by 30% relative to the traditional machining strategy, while maintaining similar surface roughness and a crack-free surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call