Abstract
In this paper, a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering systems. Different from existing event-triggered filtering, the self-triggered one does not require to continuously judge the trigger condition at each sampling instant and can save computational burden while achieving good state estimation. The triggering policy is presented for pre-computing the next execution time for measurements according to the filter’s own data and the latest released data of its neighbors at the current time. However, a challenging problem is that data will be asynchronously transmitted within the filtering network because each node self-triggers independently. Therefore, a co-design of the self-triggered policy and asynchronous distributed filter is developed to ensure consensus of the state estimates. Finally, a numerical example is given to illustrate the effectiveness of the consensus filtering approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.