Abstract

We report that a beam of spatially and temporally incoherent white light self-traps by initiating free-radical polymerization in an organosiloxane medium. Refractive index changes due to polymerization lead to the formation of a narrow channel waveguide that traps and guides the entire multimode, broadband beam without diffraction. The response time of the system, which is determined by the inherently slow rate of free-radical polymerization, exceeds by several orders of magnitude the femtosecond-scale random phase fluctuations that characterize white light. Self-trapping of incoherent light is possible in the photochemical medium because it responds to the time-averaged intensity profile of the white light beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.