Abstract

Higher-band self-trapping and oscillation (rotation) of nonlinear quadruple beams in two-dimensional (2D) square photonic lattices are numerically demonstrated. Under appropriate conditions of nonlinearity, a quadruple-like beam can self-trap into localized modes that reside in the second Bragg reflection gap through single-site excitation. By changing the initial orientation of the incident quadruple beam related to the lattices, periodic oscillations of the localized quadruple mode may be obtained. The localized quadruple state becomes a rotating doubly charged optical vortex (DCV) during rotation and should undergo charge-flipping when the rotating direction is reversed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.