Abstract

The self-trapped state (STS) of the interlayer exciton (IX) has aroused enormous interest owing to its significant impact on the fundamental properties of the van der Waals heterostructures (vdWHs). Nevertheless, the microscopic mechanisms of STS are still controversial. Herein, we study the corrections of the binding energies of the IXs stemming from the exciton-interface optical phonon coupling in four kinds of vdWHs and find that these IXs are in the STS for the appropriate ratio of the electron and hole effective masses. We show that these self-trapped IXs could be classified into type with the increasing binding energy in the tens of millielectronvolts range, which are very agreement with the red-shift of the IX spectra in experiments, and type with the decreasing binding energy, which provides a possible explanation for the blue-shift and broad line width of the IX's spectra at low temperatures. Moreover, these two types of exciton states could be transformed into each other by adjusting the structural parameters of vdWHs. These results not only provide an in-depth understanding for the self-trapped mechanism but also shed light on the modulations of IXs in vdWHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.