Abstract

With strong electron-phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.