Abstract
AbstractLead–free Sn–halide perovskites (Sn–HPs) are attractive photomaterials due to their lower toxicity, and some of them with higher stability against moisture and water, compared to their Pb‐based analogous. Interestingly, Sn‐HPs can exhibit two types of optical characteristics: the first scenario is known as band‐edge electron transitions [or band‐to‐band (b‐b) emission], where accumulated electrons in the conduction band recombine with holes in the valence band, providing a close separation between the absorption edge/photoluminescence (PL) peak (small Stokes shift). The second scenario is denominated as self‐trapped exciton (STE), where intraband gap energy states are formed to trap photocarriers generated in the perovskite, producing a broadband PL and a large Stokes shift. These optical features have been suitable for developing prominent devices, but there is no consolidated explanation about the key factors influencing the emergence of b–b emission or STE in Sn‐HPs, mainly the presence of these PL mechanisms in a particular perovskite system. This review highlights how the chemical composition, structural defects, and synthetic procedures are pivotal to producing Sn‐HPs with specific b–b or STE features. This will allow the preparation of Sn‐HPs with better quality/stability, and facile modulation of their PL properties, expanding their future applicability in LCD technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.