Abstract

We find self-trapped propagation of elliptical super-Gaussian beam in cubic–quintic nonlinear media. The soliton beam preserves its shape and size during propagation in Kerr media. Both defocusing and focusing quintic nonlinearities are considered. In a cubic (focusing)-quintic (defocusing) media breather like beam propagation with intriguing beam width oscillation is observed. The influence of beam ellipticity, super-Gaussian nature and quintic nonlinearity on self-trapping has been studied. A formula for critical power for self-focusing has been derived and it readily agrees with the results obtained by variational method. In Kerr and focusing quintic media beam collapse occurs quicker for higher order super-Gaussian beam. The critical power of self-focusing in defocusing (focusing) quintic medium prominently increases (decreases) with increasing strength of quintic nonlinearity. This variation rate is greater for higher order super Gaussian beam. A beam with greater ellipticity requires larger power for self-trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.