Abstract

Self-testing protocols enable the certification of quantum devices without demanding full knowledge about their inner workings. A typical approach in designing such protocols is based on observing nonlocal correlations which exhibit maximum violation in a Bell test. We show that in the Bell experiment known as Hardy's test of nonlocality, not only does the maximally nonlocal correlation self-test a quantum state, rather a nonmaximal nonlocal behavior can serve the same purpose. We, in fact, completely characterize all such behaviors leading to a self-test of every pure two-qubit entangled state except for the maximally entangled ones. Apart from presenting an alternative self-testing protocol, our method provides a powerful tool towards characterizing the complex boundary of the set of quantum correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.