Abstract

Self-testing is a device-independent technique based on non-local correlations whose aim is to certify the effective uniqueness of the quantum state and measurements needed to produce these correlations. It is known that the maximal violation of some Bell inequalities suffices for this purpose. However, most of the existing self-testing protocols for two devices exploit the well-known Clauser–Horne–Shimony–Holt Bell inequality or modifications of it, and always with two measurements per party. Here, we generalize the previous results by demonstrating that one can construct self-testing protocols based on the chained Bell inequalities, defined for two devices implementing an arbitrary number of two-output measurements. On the one hand, this proves that the quantum state and measurements leading to the maximal violation of the chained Bell inequality are unique. On the other hand, in the limit of a large number of measurements, our approach allows one to self-test the entire plane of measurements spanned by the Pauli matrices X and Z. Our results also imply that the chained Bell inequalities can be used to certify two bits of perfect randomness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.