Abstract
For accelerometers targeted in inertial navigation field, the DC bias error is the most destructive system error, affecting the final precision of long-term dead reckoning. This paper proposes a novel self-test and self-calibration technique for canceling out the DC bias error of the digital closed-loop accelerometers. The self-test of system DC bias is realized by injecting a 1-Bit ΣΔ modulated digital excitation and measuring the second-order harmonic distortion. As illustrated, the second-order harmonic distortion is related to the servo position deviation of the MEMS sensing element, which is one of the main causes of system DC bias error. The automatic capacitance compensation is carried out based on the amplitude and phase information of the detected second-order harmonic distortion, which can dynamically calibrate out the DC bias error. Test results show that there exists a near-linearity relationship between the system DC bias error and the second-order harmonic distortion, which is consistent with the proposed theoretical deduction. Based on the proposed method, the system DC bias error is effectively reduced from 150 to 4 mg, and unaffected by external acceleration bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.