Abstract

The paper concerns concrete carbonation, the phenomena that occurs in every type of climate, especially in urban-industrial areas. In European Standards, including Eurocode (EC) for concrete structures the demanded durability of construction located in the conditions of the carbonation threat is mainly assured by the selection of suitable thickness of reinforcement cover. According to EC0 and EC2, the thickness of the cover in the particular class of exposure depends on the structural class/category and concrete compressive strength class which is determined by cement content and water-cement ratio (thus the quantitative composition) but it is not differentiated for various cements, nor additives (i.e., qualitative composition), nor technological types of concrete. As a consequence the selected thickness of concrete cover is in fact a far estimation -sometimes too exaggerated (too safe or too risky). The paper presents the elaborated self-terminated carbonation that includes abovementioned factors and enables to indicate the maximal possible depth of carbonation. This is possible because presented model is a hyperbolic function of carbonation depth in time (the other models published in the literature use the parabolic function that theoretically assume the infinite increase of carbonation depth value). The paper discusses the presented model in comparison to other models published in the literature, moreover it contains the algorithm of concrete cover design with use of the model as well as an example of calculation of the cover thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call