Abstract

Prussian blue (PB) and its analogues (PBA), especially with hollow structures, have attracted growing attention from the researchers of energy storage field. Herein, we have developed a facile self-templating method to synthesize hollow-structured cobalt hexacyanoferrate (CoHCF) with controllable morphologies by using water-soluble precursors as templates. The method is versatile and can be extended to synthesize various PB/PBA hollow structures with tunable composition and morphology. Profiting from the unique hollow structure, the CoHCF hollow prisms manifest exceptional electrochemical performance in the Na2SO4 aqueous electrolyte, including a high specific capacitance (284 F g-1 at 1 A g-1), a high rate capability, and an excellent cycling stability (92% retention after 5000 cycles). A hybrid supercapacitor device assembled with the CoHCF hollow prisms and activated carbon shows a high specific density of 47 W h kg-1 at a specific power of 1000 W kg-1 and stable cycling performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.