Abstract

A three-dimensional hollow tubular porous carbon (SCPC) was prepared from straw cellulose waste through a self-templating method combined with NaOH activation. Straw cellulose acts both as carbon source and structural template. The obtained SCPC exhibits a 3D hierarchical porous network structure. SCPC has a high specific surface area, a high mesoporosity ratio, and a low resistivity, which make it display excellent electrochemical performance for supercapacitors. SCPC showed a high specific capacitance of 312.57 F g-1 in 6 m KOH at 0.5 A g-1 , an excellent rate performance of 281.32 F g-1 even at 15 A g-1 , and an outstanding cyclic stability of 92.93 % capacitance retention after 20 000 cycles at 1 A g-1 . SCPC-based supercapacitors can deliver an energy density of 8.67 Wh kg-1 at a power density of 3.50 kW kg-1 in 6 m KOH and an energy density of 28.56 Wh kg-1 at a power density of 14.09 kW kg-1 in 1 m Et4 NBF4 /PC, which demonstrates the possibility of applying SCPC in supercapacitors. This research not only offers a facile and sustainable method for the preparation of hierarchical porous carbon for electrochemical energy storage devices but also provides a highly efficient method for the utilization of biomass waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call