Abstract
Conventional wireless sensor networks (WSNs) in smart home-building (SHB) are typically driven by batteries, limiting their lifespan and the maximum number of deployable units. To satisfy the energy demand for the next generation of SHB which can interconnect WSNs to make the internet of smart home-building (IoSHB), this study introduces the design and implementation of a 250 mW to 2.3 W energy harvesting device. The proposed device is dynamically autonomous owing to the integration of embedded solar photovoltaic (PV) modules and power storage through a supercapacitor (SC; 5 V, 0.47 F) capable of powering WSNs for 95 s (up to 4.11 V). The deployed device can harvest indoor and outdoor ambient light at a minimum illumination of 50 lux and a maximum illumination of 200 lux. Moreover, the proposed system supports wireless fidelity (Wi-Fi) and Bluetooth Low Energy (BLE) to do data transfer to a webserver as a complete internet of things (IoT) device. A customized android dashboard is further developed for data monitoring on a smartphone. All in all, this self-powered WSN node can interface with the users of the SHBs for displaying ambient data, which demonstrates its promising applicability and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.