Abstract
Longitudinal spatial hole burning (LSHB) induces degradation of longitudinal-mode stability in distributed-feedback (DFB) lasers. Measurement of frequency modulation characteristics has revealed that, in absorptive-grating gain-coupled DFB lasers, the LSHB diminishes as power increases. This anomalous behavior has been qualitatively explained by a theoretical analysis that took into account the saturable nature of the absorption of the gain-coupled grating. This LSHB suppression effect is advantageous for high-power single-longitudinal-mode operation of DFB lasers.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.