Abstract

(RE)Ba <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7-δ</sub> bulks are well known for their ability to trap high magnetic fields; however, it has been recently shown by the current authors that stacks of commercial YBCOcoated conductor tape can outperform YBCO bulks of similar size at temperatures below 60 K due to their superior thermal stability during multipulse magnetization. The latest progress in a comprehensive study being undertaken to optimize and tailor the stacks for applications will be discussed. In this paper, a method of binding layers of superconducting tape is reported, namely, soldering of Pb-Sn solder-coated high-temperature superconducting tape developed by SuperOx. The performance of tape before and after the soldering procedure is discussed, and a 100-layer stack, trapping a field of up to 1.6 T above the surface after pulse magnetization at 10 K, is reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call