Abstract

The energy density of lithium-sulfur batteries (LSBs) is currently hampered by modest sulfur loadings and high electrolyte/sulfur ratios (E/S). These limitations can potentially be overcome using easy-to-infiltrate sulfur hosts with high catalytic materials. However, catalytic materials in such hosts are very susceptible to agglomeration due to the lack of efficient confinement in easy-to-infiltrate structures. Herein, using carbon dots as an aggregation limiting agent, the successful fabrication of self-supporting carbon nanofibers (CNF) containing Ni-single-atoms (NiSA ) and uniformly dispersed Ni-nanoparticles (NiNP ) of small sizes as multifunctional sulfur hosts is reported. The NiSA sites coordinated by such NiNP offer outstanding catalytic activity for sulfur reactions and CNF is an easy-to-infiltrate sulfur host with a large-scale preparation method. Accordingly, such hosts that can be prepared on a large scale enable sulfur cathodes to exhibit high sulfur utilization (66.5 mAh cm-2 at ≈0.02 C) and cyclic stability (≈86.1% capacity retention after 100 cycles at ≈0.12 C) whilst operating at a high sulfur loading (50mg cm-2 ) and low E/S (5µL mg-1 ). This work provides a blueprint toward practical LSBs with high energy densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.