Abstract

Developing affordable and efficient electrocatalysts toward water electrolysis under industrial conditions is crucial for large-scale production of green hydrogen. In this regard, we propose a facile and mild method to construct crystalline-amorphous composites of metal phosphate (MPi) and NiS on nickel foam (NF) for practical water electrolysis. The as-prepared electrodes exhibit excellent performance, achieving a remarkable current density of 1000 mA cm–2 at the ultralow overpotential of 345 and 223 mV for FePi-NiS/NF (oxygen evolution reaction, OER) and NiCoPi-NiS/NF (hydrogen evolution reaction, HER), respectively. The composites can undergo an in-situ transformation into highly active and targeted species under high current density, which possess a unique pore structure interconnected by nanosheets that provides an abundance of catalytic sites and open channels for efficient bubble diffusion. When operated under industrial conditions (6 M KOH, 70 °C), the assembled electrode requires only 1.712 V to attain a current density of 1000 mA cm−2. The electrodes also demonstrate exceptional performance in alkaline electrolysis with an anion exchange membrane (AEMWE) when scaled up to a larger size (area: ≈ 25 cm2). Specifically, they achieve a substantial current of 12.5 A at 1.87 V with a high energy efficiency of 79.2 % and remarkable durability over 30 h under industrial electrolysis conditions (1 M KOH, 50 °C), outperforming benchmark Pt/C/NF || IrO2/NF electrodes with energy saving of 0.215 kWh Nm–3. This work provides a cost-effective and efficient strategy for designing and constructing stable and active catalysts for water electrolysis under harsh industrial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.