Abstract

Unilateral arm paralysis is a common symptom of stroke. In stroke patients, we observed that self-guided biomechanical support by the nonparetic arm unexpectedly triggered electromyographic activity with normal muscle synergies in the paretic arm. The muscle activities on the paretic arm became similar to the muscle activities on the nonparetic arm with self-supported exercises that were quantified by the similarity index (SI). Electromyogram (EMG) signals and functional near-infrared spectroscopy (fNIRS) of the patients (n=54) showed that self-supported exercise can have an immediate effect of improving the muscle activities by 40-80% according to SI quantification, and the muscle activities became much more similar to the muscle activities of the age-matched healthy subjects. Using this self-supported exercise, we investigated whether the recruitment of a patient's contralesional nervous system could reactivate their ipsilesional neural circuits and stimulate functional recovery. We proposed biofeedback training with self-supported exercise where the muscle activities were visualized to encourage the appropriate neural pathways for activating the muscles of the paretic arm. We developed the biofeedback system and tested the recovery speed with the patients (n=27) for 2 months. The clinical tests showed that self-support-based biofeedback training improved SI approximately by 40%, Stroke Impairment Assessment Set (SIAS) by 35%, and Functional Independence Measure (FIM) by 20%.

Highlights

  • Stroke is the leading cause of long-term disability worldwide

  • SELF-SUPPORT STIMULATES DORMANT MUSCLE ACTIVITY IN THE PARETIC ARM To examine the immediate effect of self-supported exercise compared to other forms of motor rehabilitation, we recruited 54 patients with stroke (25 and 29 with severe and moderate stroke, respectively; see Table 1 for patient characteristics) for a motor study with concurrent electromyographic (EMG) muscle recordings

  • These findings show that self-support is unique among physical therapies for EMG activation and effectively normalizes activity in the peripheral damaged side during arm motion

Read more

Summary

Introduction

Of more than 750,000 stroke victims in the United States each year [1], approximately two-thirds survive and require immediate rehabilitation to recover lost brain functions [2]. These stroke rehabilitation programs, of which direct and indirect costs were estimated to be 73.7 billion dollars in 2010 [3], aim to help survivors gain physical independence and better quality of life. The typical time course for partial recovery of arm movement after mild to moderate unilateral stroke damage is 2 to 6 months, depending on the severity of tissue damage and the latency of treatment initiation [9], [10]; patients with severe damage require additional months to years of rehabilitation. The identification of rehabilitation methods that can more effectively recover brain functions in the damaged

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.