Abstract

This paper targets on self-supervised tumor segmentation. We make the following contributions: (i) we take inspiration from the observation that tumors are often characterised independently of their contexts, we propose a novel proxy task "layer-decomposition", that closely matches the goal of the downstream task, and design a scalable pipeline for generating synthetic tumor data for pre-training; (ii) we propose a two-stage Sim2Real training regime for unsupervised tumor segmentation, where we first pre-train a model with simulated tumors, and then adopt a self-training strategy for downstream data adaptation; (iii) when evaluating on different tumor segmentation benchmarks, e.g.BraTS2018 for brain tumor segmentation and LiTS2017 for liver tumor segmentation, our approach achieves state-of-the-art segmentation performance under the unsupervised setting. While transferring the model for tumor segmentation under a low-annotation regime, the proposed approach also outperforms all existing self-supervised approaches; (iv) we conduct extensive ablation studies to analyse the critical components in data simulation, and validate the necessity of different proxy tasks. We demonstrate that, with sufficient texture randomization in simulation, model trained on synthetic data can effortlessly generalise to datasets with real tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.