Abstract

The spatial heterogeneity is an important indicator of the malignancy of lung nodules in lung cancer diagnosis. Compared with 2D nodule CT images, the 3D volumes with entire nodule objects hold richer discriminative information. However, for deep learning methods driven by massive data, effectively capturing the 3D discriminative features of nodules in limited labeled samples is a challenging task. Different from previous models that proposed transfer learning models in a 2D pattern or learning from scratch 3D models, we develop a self-supervised transfer learning based on domain adaptation (SSTL-DA) 3D CNN framework for benign-malignant lung nodule classification. At first, a data pre-processing strategy termed adaptive slice selection (ASS) is developed to eliminate the redundant noise of the input samples with lung nodules. Then, the self-supervised learning network is constructed to learn robust image representations from CT images. Finally, a transfer learning method based on domain adaptation is designed to obtain discriminant features for classification. The proposed SSTL-DA method has been assessed on the LIDC-IDRI benchmark dataset, and it obtains an accuracy of 91.07% and an AUC of 95.84%. These results demonstrate that the SSTL-DA model achieves quite a competitive classification performance compared with some state-of-the-art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.