Abstract

Time series data has attached extensive attention as multi-domain data, but it is difficult to analyze due to its high dimension and few labels. Self-supervised representation learning provides an effective way for processing such data. Considering the frequency domain features of the time series data itself and the contextual feature in the classification task, this paper proposes an unsupervised Long Short-Term Memory (LSTM) and contrastive transformer-based time series representation model using contrastive learning. Firstly, transforming data with frequency domain-based augmentation increases the ability to represent features in the frequency domain. Secondly, the encoder module with three layers of LSTM and convolution maps the augmented data to the latent space and calculates the temporal loss with a contrastive transformer module and contextual loss. Finally, after self-supervised training, the representation vector of the original data can be got from the pre-trained encoder. Our model achieves satisfied performances on Human Activity Recognition (HAR) and sleepEDF real-life datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.