Abstract

Data-driven approaches for prognostic and health management (PHM) increasingly rely on massive historical data, yet annotations are expensive and time-consuming. Learning approaches that utilize semi-labeled or unlabeled data are becoming increasingly popular. In this paper, a self-supervised pre-training via contrast learning (SSPCL) is introduced to learn discriminative representations from unlabeled bearing datasets. Specifically, the SSPCL employs momentum contrast learning (MCL) to investigate the local representation in terms of instance-level discrimination contrast. Further, we propose a specific architecture for SSPCL deployment on bearing vibration signals by presenting several data augmentations for 1D sequences. On this basis, we put forward an incipient fault detection method based on SSPCL for run-to-failure cycle of rolling bearings. This approach transfers the SSPCL pre-trained model to a specific semi-supervised downstream task, effectively utilizing all unlabeled data and relying on only a little priori knowledge. A case study on FEMTO-ST datasets shows that the fine-tuned model is competent for incipient fault detection, outperforming other state-of-the-art methods. Furthermore, a supplemental case on a self-built fault datasets further demonstrate the great potential and superiority of our proposed SSPCL method in PHM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.