Abstract
The study of brain lesions can benefit from a clear identification of transitions between healthy and pathological tissues, through the analysis of brain imaging data. Current signal processing methods, able to address these issues, often rely on strong prior information. In this article, a new method for tissue segmentation is proposed. It is based on a discriminative strategy, in a self-supervised machine learning approach. This method avoids the use of prior information, which makes it very versatile, and able to cope with different tissue types. It also returns tissue probabilities for each voxel, crucial for a good characterization of the evolution of brain lesions. Simulated as well as real benchmark data were used to validate the accuracy of the method and compare it against other segmentation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.