Abstract

Container security has received much research attention recently. Previous work has proposed to apply various machine learning techniques to detect security attacks in containerized applications. On one hand, supervised machine learning schemes require sufficient labeled training data to achieve good attack detection accuracy. On the other hand, unsupervised machine learning methods are more practical by avoiding training data labeling requirements, but they often suffer from high false alarm rates. In this paper, we present a generic self-supervised hybrid learning (SHIL) framework for achieving efficient online security attack detection in containerized systems. SHIL can effectively combine both unsupervised and supervised learning algorithms but does not require any manual data labeling. We have implemented a prototype of SHIL and conducted experiments over 46 real world security attacks in 29 commonly used server applications. Our experimental results show that SHIL can reduce false alarms by 33-93% compared to existing supervised, unsupervised, or semi-supervised machine learning schemes while achieving a higher or similar detection rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.