Abstract

Microstructure control via additive manufacturing has enormous potential as manufacturers, materials scientists, and designers alike seek to exploit novel fabrication technologies to improve component performance. Recent works have demonstrated the feasibility of producing materials with controlled microstructures across various length scales. However, the experimental approach towards exploring the process-structure space can be laborious and costly. This is particularly true if also considering scan pattern optimization which is well suited for processes such as powder bed fusion electron beam melting. In this work we propose an approach for encoding additive manufacturing layer-wise thermal response signatures using self-supervised representation learning. Thermal simulations from a reduced order model are utilized to estimate the spatiotemporal response during printing. A machine learning framework, using video-transformers, is utilized to efficiently distill spatiotemporal patterns into a compact latent space representation. This latent state representation encodes the relevant physics which is then utilized to establish a data-driven process-structure model for an additively manufactured Ni-based superalloy. The proposed methodology could potentially be used towards in-situ process monitoring, scan pattern experimental design, and component qualification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.