Abstract

Objective. With the progress of artificial intelligence (AI) in magnetic resonance imaging (MRI), large-scale multi-center MRI datasets have a great influence on diagnosis accuracy and model performance. However, multi-center images are highly variable due to the variety of scanners or scanning parameters in use, which has a negative effect on the generality of AI-based diagnosis models. To address this problem, we propose a self-supervised harmonization (SSH) method. Approach. Mapping the style of images between centers allows harmonization without traveling phantoms to be formalized as an unpaired image-to-image translation problem between two domains. The mapping is a two-stage transform, consisting of a modified cycle generative adversarial network (cycleGAN) for style transfer and a histogram matching module for structure fidelity. The proposed algorithm is demonstrated using female pelvic MRI images from two 3 T systems and compared with three state-of-the-art methods and one conventional method. In the absence of traveling phantoms, we evaluate harmonization from three perspectives: image fidelity, ability to remove inter-center differences, and influence on the downstream model. Main results. The improved image sharpness and structure fidelity are observed using the proposed harmonization pipeline. It largely decreases the number of features with a significant difference between two systems (from 64 to 45, lower than dualGAN: 57, cycleGAN: 59, ComBat: 64, and CLAHE: 54). In the downstream cervical cancer classification, it yields an area under the receiver operating characteristic curve of 0.894 (higher than dualGAN: 0.828, cycleGAN: 0.812, ComBat: 0.685, and CLAHE: 0.770). Significance. Our SSH method yields superior generality of downstream cervical cancer classification models by significantly decreasing the difference in radiomics features, and it achieves greater image fidelity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call