Abstract

Reconstruction of seismic data is an important but challenging task in seismic data processing. Different machine-learning-based algorithms have been developed to solve this ill-posed problem and achieved great progress. However, most machine-learning-based methods rely on supervised learning where a good training dataset with many complete shot-gathers are required to train the model. Although the generative model has been used for unsupervised learning and reconstructing signals in a shot-gather, it fails to accurately resolve the fine features, especially when aliasing is the main concern. In addition, multiple shots’ interpolation problems have not been fully investigated by the unsupervised machine-learning-based approaches. In this work, we propose a self-supervised learning method using a blind-trace network and two antialiasing techniques (automatic spectrum suppression and mix-training) for seismic data reconstruction. The method is validated using challenging and realistic scenarios. Test results show that the method can be applied to single-shot or multiple shots’ cases and adapt well to different decimation patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.