Abstract
Nosocomial infections transmitted through airborne, droplet, aerosol, and particulate-transported modes pose substantial infection risks to patients and healthcare employees. In this study, we demonstrate a self-cleaning filter comprised of laser-induced graphene (LIG), a porous conductive graphene foam formed through photothermal conversion of a polyimide film by a commercial CO2 laser cutter. LIG was shown to capture particulates and bacteria. The bacteria cannot proliferate even when submerged in culture medium. Through a periodic Joule-heating mechanism, the filter readily reaches >300 °C. This destroys any microorganisms including bacteria, along with molecules that can cause adverse biological reactions and diseases. These molecules include pyrogens, allergens, exotoxins, endotoxins, mycotoxins, nucleic acids, and prions. Capitalizing on the high surface area and thermal stability of LIG, the utility of graphene for reduction of nosocomial infection in hospital settings is suggested.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.