Abstract

Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.