Abstract

In most angiosperms, the endosperm develops before the embryo, but with harmony between the two structures until final seed formation. In an embryological study, we show that inbreeding depression causes disharmony in development of the two structures in two Leguminosae shrubs, Cytisus multiflorus and C. striatus. Our main objective was to test the causes of self-sterility in the two species by comparing the embryological development of the self seeds with that of cross seeds. In developing selfed seeds of C. multiflorus, the embryo reaches at most the globular stage and never forms mature seeds, while in C. striatus a few mature selfed seeds are formed. In both species, the main cause of abortion of developing selfed seeds is diminished endosperm development (low values of the ratio of endosperm to embryo), which triggers collapse of the endosperm and embryo. The results indicate that self-sterility in C. striatus is postzygotic because of strong, early inbreeding depression, while in C. multiflorus there exists a mixed pre- and postzygotic mechanism; the prezygotic mechanism causes rejection of some self-pollen tubes in the style/ovary, and the early inbreeding depression triggers abortion of fertilized ovules that escaped that action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.