Abstract
Coherent mode-locking (CML) uses self-induced transparency (SIT) soliton formation to achieve, in contrast to conventional schemes based on absorption saturation, the pulse durations below the limit allowed by the gain line width. Despite the great promise it is difficult to realize it experimentally because a complicated setup is required. In all previous theoretical considerations CML is believed to be non-self-starting. In this paper we show that if the cavity length is selected properly, a very stable (CML) regime can be realized in an elementary two-section ring-cavity geometry, and this regime is self-developing from the non-lasing state. The stability of the pulsed regime is the result of a dynamical stabilization mechanism arising due to finite-cavity-size effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.