Abstract

The low capacitance utilization and capacitance fading of manganese dioxide (MnO2) is mainly due to poor electro-conductivity and irreversible phase transform. This work proposes a new method of designing hierarchical and binder-free electrode based on MnO2 material for stable supercapacitor with high specific capacitance. Herein, we fabricated the self-standing electrode of MnO2 on nitrogen-doped graphene and single wall carbon nanotubes (SWCNTs) self-standing film (NGCF) by electrochemical deposition. As a result, as-prepared MnO2/NGCF cathode showed excellent electrochemical performance of 489.7 F g-1 at 1 A g-1. Assembled symmetric aqueous supercapacitor (SC) manifests high voltage of 2.4 V and presents excellent high energy density of 106.7 Wh kg-1 at 1200 W kg-1 and outstanding long-life stability without no decay after 10 000 charge-discharge circuits. This work proposes a new view of designing hierarchical and binder-free electrode with high energy density and long cycling stability based on MnO2 material for stable symmetric supercapacitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call