Abstract

Self-standing V2O5 nanobelt electrode free of binders, conductive carbon or current collectors was successfully prepared via a simple one-step hydrothermal reaction. The length of V2O5 nanobelts was up to several hundreds micrometers and the thickness was around 40nm. Ultralong nanobelts as building blocks and internal voids provide a robust mechanical flexibility and shortened ion/electron transport pathway. The self-standing electrode delivered an initial specific capacity of 127.4mAhg−1 at a current density of 60mAg−1 and exhibited excellent cycling stability with capacity retention up to 89.8% after 200 cycles. The outstanding cycling performance can be attributed to the excellent network stability, shortened Li-ion diffusion pathway and the high surface area between electrolyte/electrode interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.