Abstract

Raman spectroscopy using surface-enhanced Raman scattering (SERS) nanoprobes represents an ultrasensitive and high-precision technique for in vivo imaging. Clinical translation of SERS nanoprobes has been hampered by biosafety concerns about the metal substrates used to enhance Raman signals. We report a set of small molecules with bis-thienyl-substituted benzobisthiadiazole structures that enhance Raman signal through self-stacking rather than external substrates. In our technique, called stacking-induced charge transfer-enhanced Raman scattering (SICTERS), the self-stacked small molecules form an ordered spatial arrangement that enables three-dimensional charge transfer between neighboring molecules. The Raman scattering cross-section of SICTERS nanoprobes is 1350 times higher than that of conventional SERS gold nanoprobes of similar particle size. SICTERS outperforms SERS in terms of in vivo imaging sensitivity, resolution and depth. SICTERS is capable of noninvasive Raman imaging of blood and lymphatic vasculatures, which has not been achieved by SERS. SICTERS represents an alternative technique to enhance Raman scattering for guiding the design of ultrasensitive substrate-free Raman imaging probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.