Abstract

Ingyu Park et al. (2001) investigated an unmanned bicycle system but did not consider the lateral motion of mass. In this paper, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle with load mass balance system which, plays important role in stabilization. We propose a control algorithm for the self stabilization of unmanned bicycle by using nonlinear control based on the sliding patch and stuck phenomena. In deriving the above control algorithm, we assume that the load mass is located in the middle of the mass balance system. We then propose a control strategy to turn the bicycle system left or right by moving the center of load mass left and right respectively. In the computer simulations, we adopt a low pass filter for the real implementation of the proposed control law which bring. about the chattering problem. From the computer simulation results, we can show the effectiveness of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.